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Detecting local synchronization in coupled chaotic systems
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We introduce a technique to detect and quantify local functional dependencies between coupled chaotic
systems. The method estimates the fraction of locally synchronized configurations, in a pair of signals with an
arbitrary state of global synchronization. Application to a pair of interactingsiRo oscillators shows that our
method is able to quantify the number of dynamical configurations where a local prediction task is possible, as
well as in the absence of global synchronization features.
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In the past, much attention has been devoted to charactethe two interacting subsystenxsandY are properly identi-
izing coupled chaotic systems exhibiting synchronization refied within the original dynamical systems, with their
gimes[1]. In this framework, different synchronization fea- dimensionalities measured, and a second one in which the
tures have been studied, such as, e.g., identical anldcal synchronization pointsX(y) are detected. The first
generalized synchronizati¢@,3], phase synchronizatidd], problem was solved recently in Rdfl0] by means of a
and lag and intermittent lag synchronizati@]. Further- modification of thefalse nearest neighboralgorithm[11],
more, synchronization effects have been explored in naturalllowing for a separate measurement of the dimensionalities
phenomen46], and controlled laboratory experimerii. of weakly coupled systems in the case of emergent synchro-

In this context, various attempts to provide unifying defi- nization motions.
nitions for encompassing the different synchronization phe- In this paper, we will address the second step of the search
nomena have been pursulg]. Recently, a formal approach by introducing thesynchronization points percentag8PP
to the problem has been put forwdi@, in which the unify-  indicator, and show how one can gather information on local
ing property of synchronization is established in the emersynchronization properties emerging in coupled chaotic
gence of local functional dependencies between neighbokystems.
hoqu of particular phase space configurations in the” \ve start by assuming to havhl data points inZ
projected spaces of the two coupled subsystems. The ap: gmy +my By means of a proper subspace reconstruction

proach assumes a systefe R™*™ divisible into two [10], we end up withN data points ifX  R™ andN corre-

coupled subsystems{eR™ and Y e R™. In this frame- L . m, . - .
work, synchronization is equivalent to predictability of one,s,pondlng images i < 72, We then pick a specific point

, . ~°. X e X and consider its imagge Y.
subsystem's values from another, i.e., that an eyeirt Y The first task consists of identifying proper domains and

always occurs when a particular evenin X occurs. How-  ¢o-domains for a statistical analysis of the existence of func-
ever, when searching for evidence of synchronization in datajonal dependency. For this purpose, we choose a pair of
one seldom has data that fall right on a givear on a given  positive real numberss( ,8) (the indexk being an integey

y. Rather, the closex(t) is to the closery(t) is toy. The ~and consider the volumé, CX(V,CY) containing all
latter statement is captured rigorously by a locahtinuous ~ points whosem, distance (n, distance¢ from X (y) is

function; namely, the trajectories of(t) close tox are smaller thare, (6). Furthermore, we look at all points X

mapped near ty by a local function that is continuous at the falling within U, and verify the imaging condition, that is,

S~ ~~ . . we ask ourselves whether or not all images of the points in
point (X,y), and that, nearx,y) describes well the predict- U fall within V- If the answer is no. we choo
ability of subsysten¥ dynamics from subsystedxi dynam- ek o ’ ?ﬁ‘“
ics. Reference[9] gives a general, formal mathematical <€k, and repeat the above procedure. If forkathe imag-
ground to the above statements, and establishes the sufficidR condition is not satisfied, the task ends with the conclu-
conditions for a system to display global synchronizationSion that no local funct|onal~d§pendency exists in the vicinity
features, i.e., to admit local functional dependencies regardsf the chosen configuratiorx(y). If, instead, for a giverk
less on the particular choice of the,§) phase space con- theimaging condition is verified, the task ends with the iden-
figuration. tification of a valid pair €, 6), over which one has to test
For a generic pair of coupled chaotic systems, however, ifor t_he existence pf a contlnuoqs functional relgt|onsh|p.
is to be expected that synchronization occurs only at some Figure 1 helps in understanding the schematic representa-
locations(if any) of the phase space, and not globally. In thistion of the procedure. In the following we will denote with
case, a continuous functional dependencey@) on x(t) UCX (VCY) the neighborhoodU,; (V) surrounding
will exist only locally around a set of synchronization points'x(y), and assume than<N points fall within U. By con-
{Xs,Ys struction, the number of points falling withid will be n
Implementation of a search for local functional dependen=m, reflecting the fact tha¥¥ might host also images of
cies requires two separate steps: a preliminary one in whichoints not belonging t&J.
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answers the practical question of predicting state¥ wvith
error § from measurements of statesXnwith error &%

We have made use of the original formulation of the con-
tinuity statistics[12], that explicitly consider®®=P(V) in
Eqg. (2). More recently, the authors of Ref12] have pro-
posed an alternative way for measuring the confidence level,
by choosingP=1/2 in the denominator of E¢2), corre-
sponding to a hypothesis of equal probability for an attempt
to fall within or outside the selected bd%3].

Our technique for characterizing synchronization consists
then of the three following pointgi) check the imaging of

neighborhoods of a given configuratigrnto neighborhoods

of y; (i) assess the degree of confidence that such an imag-
ing process comes from the existence of a local continuous
m< n points in U n points in V function; (iii) repeat points(i) and (ii) for all N pairs of
FIG. 1. Schematic representation of the statistical continuityconfigurationsx,y) available in the data set. This procedure
analysis. The upper part shows the reconstructed trajectories in tllOWs a classification of the different dynamical states into
two subspaceX andY, and the location of the pointsandy. The locally syn_chronlzed and nonsyncr_\ror_llzed ones. As a result
lower part zooms in on th&),V neighborhoods. Fog=¢,,,, v ON€ can introduce the synchronization points peircentage
contains all images of thea points inU (solid circles, plus images  (SPP indicator, as the ratio between the total numhbeof
of other points(empty squarésfrom outsideU. Fore=¢,, some locally synchronized configurations and the total number of
points inU (empty circleg have images outside. available points\.
The proposed method can be applied to any kind of mul-
The probability of a single point falling withinV is tivariate data set, for the detection of hidden local synchro-
P(V)=n/N, and the probability that points fall withinV  nization properties, that cannot be detected by global indica-
by pure chance isP,(V)=P(V)"=(n/N)™. This latter tors, such as correlation functions, Lyapunov exponents,
quantity, for reasonable choices ofm [reasonable pairs Lyapunov functionals, or any other kind of tim@r en-
(e%,9)], is a very small number. However, one has to fix asemble average indicators that unavoidably result in mixing
confidence levebf comparison, for assessing existence of alocally synchronized and unsynchronized configurations. As
local continuous function between the two neighborhoodsa result, the SPP indicator furnishes relevant information in
This problem was addressed in Relf2], where thecontinu-  all those cases in which synchronization states emerge lo-
ity statisticsmethod was proposed. This consists of calculatcally in phase space, to detect predictability properties that

ing the quantitybp, defined as are limited to some subset of the dynamics.
In order to illustrate the robustness of the method, in the
bp=max B(q,m;P), (1) following we will refer to a test case, represented by a pair of
g=1,...) m

nonidentical bidirectionally coupled chaotic §ber oscilla-
tors. Herem;=m,= 3, and the subspaces andY contain
state vectorx=(Xxy,Y1,2;) andy=(X,,Y,,Z,) whose evo-
lution is ruled by

where B(g,m;P) is the binomial distribution, giving the
probability thatg=m events out ofm attempts are realized
for a process of elementary probabili®y

As said above, the presence of a single data withiras

probability P(V). The quantitybp [for P=P(V)] represents X12= ~ @1 Y127 Z1 ot €(Xa 17 X1 9,
then the maximum oveq of the probability that, giverm )
points,q out of them fall intoV. Hence a level of confidence Y1,2= @12X1 21 0.16%; 5, ()]
for the existence of a continuous function can be estimated in _
terms of the ratio 23 ,=0.2+ 25 AX; ,—10).
®= Pm(V) @ In Egs.(3), w1 .= wo* A represent the natural frequencies

bp of the two chaotic oscillatorayy=0.97, A=0.02 is the fre-
) ) ~quency mismatch, ane>0 rules the coupling strength. As

If ®~1 we have no trustable information about the exis-increases, the emergence of different synchronization fea-
tence of such a functional relationship, insofar as the chancgres in Eqs(3) has been described and characterized in the
probability of having oum points inV is of the same order Jiterature[4,5]. Precisely, fore<0.036 no global synchroni-
of the maximum probability of having events Yhout of m  zation (NS) is established, in terms of the global indicators
attempts. On the contrary, <1, the chance probability of proposed up to now. For 0.08&<0.11 a phase synchro-
having ourm points inV is negligible compared tbp. Thus  nized(PS regime emerges characterized by the boundedness
one concludes that the two sé#sandV are the domain and in time of the phase differenced ¢p=|¢;— ¢,|[ b1
co-domain, respectively, of a local continuous function map—= arctang, ,/x, ;) being the phases of the two oscillathrs

ping states inX close tox to states inY close toy. This  whereas the two chaotic amplitudes remain almost uncorre-
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lated [4]. At larger coupling strengthse&0.145), lag syn- 1.0
chronization(LS) is established, corresponding to a collec- !
tive motion wherein|x(t)—y(t—7)| is bounded over the 0.8
whole dynamical evolution{>0 represents here a lag tiine '
[5]. In this regime, increasing results in gradually decreas-
ing 7, eventually ending with a regime indistinguishable 0.6
from complete synchronizatiofC9). [

Most of the transition points between these regimes wer% 0.4-
also identified in Ref[5], by inspection of the Lyapunov
spectrum of Eqs(3) as a function of the coupling strength.

Precisely, the NS to P8S to LS transition occurs for that 0.2

value of e for which a previously zerdpositive Lyapunov

exponent becomes negative. On the other hand, the LS to C 0.0 . . . .

transition is a smooth transition that can be tracked by use o 0.0 0.2 04 0.6 0.8 1.0

the time averaged similarity functids]. In the following we

apply our method with a threshold value &=0.1 for the

discrimination of whether or not the coupled systems display FIG. 2. SPP indicatorsee text for definition vs coupling

local functional relationships. strengthe. The vertical dashed lines indicate the transition points
An intermediate synchronization regime between PS and#ietween the different synchronization regimes. The inset shows a

LS exists in the range 0.Kle<0.145, called intermittent zoom limited to the range 0.65¢<0.15, where the PS to ILS

lag synchronization(ILS), where the systent3) displays transitiqn poin_t is located até.=0.10. Notice the two different

long epochs of LS evolution, interrupted by persistent burst§/0Pes in the linear growth of SPP fer e; and e> e

of desynchronized motion. This has been observed numeri-

cally, and put in relation with the system’s trajectory passingt0 equivalent results. As one expects, SPP increases mono-

through configurations where one globally negativetonically as the coupling strength increases, saturating to 1

Lyapunov exponent has a local positive value. Since ILS igvhen approaching the CS regime. . .

an intimately local phenomenon, its transition point has not _Interesting information can be extracted by inspection of

been captured by those techniques that measure time or ent P Within those synchronization regimes, such as PS and

semble averaged quantities. As a result, up to now, studies dh> that do not correspond to global synchronization fea-

ILS have been limited to numerical investigatiof&, or tures. In particular, it is found that SPP is linearly increasing

based upon the role in the synchronization process played b\%ith € in both regimes, but with two different slopesee the

the different unstable periodic orbits visited by the dynamicsI set of Fig. 3. The linear increase of the indicator already

: o : 2 . within PS is a relevant result. Indeed, if and to which extent
[14]. We will show that our SPP |_nd|cator is able to d'SCT'm" PS implies weak correlations in the chaotic amplitudes was
nate between ILS and PS regimes, as well as to directly

identify the PS to ILS transition point.

We have performed long time simulations of E¢3). at 100 .‘,,.“-
; ; G
several coupling strength values, and collected data pomt§ 0 | e
from the two scalar outputg; and x,. For eache, data ~ —
points are collected over a time corresponding toxI1@® & 1 . S N N
Rossler cycles, with a sampling frequency of ten points per?? | abnsansaaaniss Assastsssase (2
cycle. Simulations were performed with a standard fourth 0.1

order Runge-Kutta method, and with random initial condi- 100 200 300 400 500 600

tions. Furthermore, the standard embedding technjGgé

was used to reconstruct the three dimensional vector states 7o
andy from time-delayed coordinates of the scalar variables
X, and x,, and calculation of the SPP indicator was per-
formed on the reconstructed spaces.

Figure 2 reports the behavior of the SPP indicator vs the 10 ,

coupling strengthe, calculated by fixingé so asn=150 10 100
points are falling withinV. Fixing n results in general in an n

error & that is not constant over the attractor. On the other g 3. (3 SPP indicator vs numberof points falling withinV
side, if the measure is strongly nonhomogeneous, fXing for ¢=0.01 (triangles, N$, e=0.08 (squares, PS and e=0.155

cou!d_generate situation.s in whiah is so small that the (circles, LS. (b) SPP vsn within the LS regime fore=0.155(dot-
statistics becomes meaningless. These concerns do not apab# line, e=0.17 (dashed ling ande=0.19 (continuous ling For

however, in the case of the Bsler system for the parameters all cases, before saturation€50), SPP depends onwith a scal-
used in Egs.(3), since the density of points is roughly ing law SPP~n? with 8~0.85. Forn>50 the three curves satu-
homogeneous over the attractor and both choices leaghte to 100% of synchronization points.

100

SPP(%

(®)
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yet unknown, and constituted an issue generating contrahe behavior ofr within LS, that monotonically decreases as
versy. The present result shows that PS does imply an ine increases.
creasing percentage of local functional relationship, thus Coming again to Fig. @), one realizes that for both NS
quantifying directly the degree of amplitude synchronization(triangle and PS(squares the SPP indicator is always
within such a regime. Furthermore, the crossover point bepounded away from 1. This indicates that in these regimes a
tween the slopes of the two linear growths allows one tyobal predictability of one subsystem'’s states from measure-
identify the PS to ILS transition point &=0.10, that none  ment in the other subspace is never possible for any choice
of the various indicators used in previous works was capablgs rasolution. However, given a resolutighin the image
to reveal. _ o _ subspacda maximum error allowed in the predictiprour
Finally, other interesting information can be extracted;,gicator quantifies the number of states that can be locally
from the scaling behavior of SPP with that is with enlarg- e gicted at that resolution, thus revealing that local hidden
ing the radiuss of the image box in the/ subspace. Figure - ¢y chronization features can be extracted for prediction pur-
3(a) shows SPP vs for the NS, PS, and LS regimes. In all 5505 4150 in those cases in which global dependencies are

cases, the SPP indicator increases monotonically. For Lyt established. This feature might be relevant for detecting
(circles it fastly saturates to lthe same value as G.SThis  qnfigurations where a local prediction can be assessed, in

is reflecting the fact that LS differs from CS only due to the ' situations where a global prediction procedure fails.
presence of a lag time. Enlarging too m_uch th? neighbor- In real data, the effect of noise is to reduce the resolution
hood size results iV to fully overlap with all images of j, he phase space, so that the statistics relative to boxes
points in U shifted by a phase factapr, wherew is the  ontaining a small number of points is not reliable anymore.
mean frequency of the oscillator, thus making indistinguish-a tnreshold inn should therefore be introduced, typically

able LS from CS. _ corresponding tos's larger than the noise-induced uncer-
More insights on this property can be extracted from F'g'tainty.

3(b), where SPP is reported vswithin the LS regime for

different values ok, corresponding to different values of the  The authors are indebted to L. Moniz and L. M. Pecora
lag time 7. Here one sees that, before saturation, SPP dder many fruitful discussions. This work was partially sup-

pends om with a scaling law SPP-n? with a unique ex- ported by EU Contract No. HPRN-CT-2000-00158, and
ponent3~0.85 for the threes values. However, the three MIUR Project No. FIRB n. RBNEO1CW3M_001. L.P. ac-

curves saturate to 1 at three different valuesofeflecting  knowledges support from Contract No. MCFI-2000-01822.
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