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Detecting local synchronization in coupled chaotic systems
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~Received 24 March 2003; published 4 March 2004!

We introduce a technique to detect and quantify local functional dependencies between coupled chaotic
systems. The method estimates the fraction of locally synchronized configurations, in a pair of signals with an
arbitrary state of global synchronization. Application to a pair of interacting Ro¨ssler oscillators shows that our
method is able to quantify the number of dynamical configurations where a local prediction task is possible, as
well as in the absence of global synchronization features.
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In the past, much attention has been devoted to chara
izing coupled chaotic systems exhibiting synchronization
gimes@1#. In this framework, different synchronization fea
tures have been studied, such as, e.g., identical
generalized synchronization@2,3#, phase synchronization@4#,
and lag and intermittent lag synchronization@5#. Further-
more, synchronization effects have been explored in nat
phenomena@6#, and controlled laboratory experiments@7#.

In this context, various attempts to provide unifying de
nitions for encompassing the different synchronization p
nomena have been pursued@8#. Recently, a formal approac
to the problem has been put forward@9#, in which the unify-
ing property of synchronization is established in the em
gence of local functional dependencies between neigh
hoods of particular phase space configurations in
projected spaces of the two coupled subsystems. The
proach assumes a systemZPRm11m2 divisible into two
coupled subsystems,XPRm1 and YPRm2. In this frame-
work, synchronization is equivalent to predictability of on
subsystem’s values from another, i.e., that an eventỹ in Y
always occurs when a particular eventx̃ in X occurs. How-
ever, when searching for evidence of synchronization in d
one seldom has data that fall right on a givenx̃ or on a given
ỹ. Rather, the closerx(t) is to x̃ the closery(t) is to ỹ. The
latter statement is captured rigorously by a localcontinuous

function; namely, the trajectories ofx(t) close to x̃ are
mapped near toỹ by a local function that is continuous at th
point (x̃,ỹ), and that, near (x̃,ỹ) describes well the predict
ability of subsystemY dynamics from subsystemX dynam-
ics. Reference@9# gives a general, formal mathematic
ground to the above statements, and establishes the suffi
conditions for a system to display global synchronizat
features, i.e., to admit local functional dependencies reg
less on the particular choice of the (x̃,ỹ) phase space con
figuration.

For a generic pair of coupled chaotic systems, howeve
is to be expected that synchronization occurs only at so
locations~if any! of the phase space, and not globally. In th
case, a continuous functional dependence ofy(t) on x(t)
will exist only locally around a set of synchronization poin

$x̃s ,ỹs%.
Implementation of a search for local functional depend

cies requires two separate steps: a preliminary one in w
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the two interacting subsystemsX andY are properly identi-
fied within the original dynamical systemsZ, with their
dimensionalities measured, and a second one in which
local synchronization points (x̃,ỹ) are detected. The firs
problem was solved recently in Ref.@10# by means of a
modification of thefalse nearest neighborsalgorithm @11#,
allowing for a separate measurement of the dimensional
of weakly coupled systems in the case of emergent sync
nization motions.

In this paper, we will address the second step of the sea
by introducing thesynchronization points percentage~SPP!
indicator, and show how one can gather information on lo
synchronization properties emerging in coupled chao
systems.

We start by assuming to haveN data points in Z
PRm11m2. By means of a proper subspace reconstruct
@10#, we end up withN data points inXPRm1 andN corre-
sponding images inYPRm2. We then pick a specific poin
x̃PX and consider its imageỹPY.

The first task consists of identifying proper domains a
co-domains for a statistical analysis of the existence of fu
tional dependency. For this purpose, we choose a pai
positive real numbers («k ,d) ~the indexk being an integer!,
and consider the volumeU«k

,X(Vd,Y) containing all
points whosem1 distance (m2 distance! from x̃ ( ỹ) is
smaller than«k (d). Furthermore, we look at all points inX
falling within U«k

, and verify the imaging condition, that is
we ask ourselves whether or not all images of the points
U«k

fall within Vd . If the answer is no, we choose«k11

,«k , and repeat the above procedure. If for allk the imag-
ing condition is not satisfied, the task ends with the conc
sion that no local functional dependency exists in the vicin
of the chosen configuration (x̃,ỹ). If, instead, for a givenk̃
the imaging condition is verified, the task ends with the ide
tification of a valid pair (« k̃ ,d), over which one has to tes
for the existence of a continuous functional relationship.

Figure 1 helps in understanding the schematic represe
tion of the procedure. In the following we will denote wit
U,X (V,Y) the neighborhoodU« k̃

(Vd) surrounding

x̃( ỹ), and assume thatm,N points fall within U. By con-
struction, the number of points falling withinV will be n
>m, reflecting the fact thatV might host also images o
points not belonging toU.
©2004 The American Physical Society01-1



a
f
d

la

e
d

is
n

r

f

ap

n-

vel,

pt

ists

ag-
ous

re
to

sult
age

of

ul-
ro-
ica-
nts,

ng
As
in
lo-

hat

the
of

s

fea-
the

rs
-
ess

rre-

it
n t

PASTUR, BOCCALETTI, AND RAMAZZA PHYSICAL REVIEW E69, 036201 ~2004!
The probability of a single point falling withinV is
P(V)[n/N, and the probability thatm points fall within V
by pure chance isPm(V)5P(V)m5(n/N)m. This latter
quantity, for reasonable choices ofn,m @reasonable pairs
(« k̃ ,d)], is a very small number. However, one has to fix
confidence levelof comparison, for assessing existence o
local continuous function between the two neighborhoo
This problem was addressed in Ref.@12#, where thecontinu-
ity statisticsmethod was proposed. This consists of calcu
ing the quantitybP , defined as

bP5 max
q51, . . . ,m

B~q,m;P!, ~1!

where B(q,m;P) is the binomial distribution, giving the
probability thatq<m events out ofm attempts are realized
for a process of elementary probabilityP.

As said above, the presence of a single data withinV has
probabilityP(V). The quantitybP @for P5P(V)] represents
then the maximum overq of the probability that, givenm
points,q out of them fall intoV. Hence a level of confidenc
for the existence of a continuous function can be estimate
terms of the ratio

Q5
Pm~V!

bP
. ~2!

If Q'1 we have no trustable information about the ex
tence of such a functional relationship, insofar as the cha
probability of having ourm points inV is of the same orde
of the maximum probability of having events inV out of m
attempts. On the contrary, ifQ!1, the chance probability o
having ourm points inV is negligible compared tobP . Thus
one concludes that the two setsU andV are the domain and
co-domain, respectively, of a local continuous function m
ping states inX close to x̃ to states inY close to ỹ. This

FIG. 1. Schematic representation of the statistical continu
analysis. The upper part shows the reconstructed trajectories i

two subspacesX andY, and the location of the pointsx̃ andỹ. The
lower part zooms in on theU,V neighborhoods. For«5«k11 , V
contains all images of them points inU ~solid circles!, plus images
of other points~empty squares! from outsideU. For «5«k , some
points inU ~empty circles! have images outsideV.
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answers the practical question of predicting states inY with
error d from measurements of states inX with error « k̃ .

We have made use of the original formulation of the co
tinuity statistics@12#, that explicitly considersP5P(V) in
Eq. ~2!. More recently, the authors of Ref.@12# have pro-
posed an alternative way for measuring the confidence le
by choosingP51/2 in the denominator of Eq.~2!, corre-
sponding to a hypothesis of equal probability for an attem
to fall within or outside the selected box@13#.

Our technique for characterizing synchronization cons
then of the three following points:~i! check the imaging of
neighborhoods of a given configurationx̃ into neighborhoods
of ỹ; ~ii ! assess the degree of confidence that such an im
ing process comes from the existence of a local continu
function; ~iii ! repeat points~i! and ~ii ! for all N pairs of
configurations (x̃,ỹ) available in the data set. This procedu
allows a classification of the different dynamical states in
locally synchronized and nonsynchronized ones. As a re
one can introduce the synchronization points percent
~SPP! indicator, as the ratio between the total numberñ of
locally synchronized configurations and the total number
available pointsN.

The proposed method can be applied to any kind of m
tivariate data set, for the detection of hidden local synch
nization properties, that cannot be detected by global ind
tors, such as correlation functions, Lyapunov expone
Lyapunov functionals, or any other kind of time~or en-
semble! average indicators that unavoidably result in mixi
locally synchronized and unsynchronized configurations.
a result, the SPP indicator furnishes relevant information
all those cases in which synchronization states emerge
cally in phase space, to detect predictability properties t
are limited to some subset of the dynamics.

In order to illustrate the robustness of the method, in
following we will refer to a test case, represented by a pair
nonidentical bidirectionally coupled chaotic Ro¨ssler oscilla-
tors. Herem15m253, and the subspacesX andY contain
state vectorsx[(x1 ,y1 ,z1) and y[(x2 ,y2 ,z2) whose evo-
lution is ruled by

ẋ1,252v1,2y1,22z1,21e~x2,12x1,2!,

ẏ1,25v1,2x1,210.165z1,2, ~3!

ż1,250.21z1,2~x1,2210!.

In Eqs.~3!, v1,25v06D represent the natural frequencie
of the two chaotic oscillators,v050.97, D50.02 is the fre-
quency mismatch, ande.0 rules the coupling strength. Ase
increases, the emergence of different synchronization
tures in Eqs.~3! has been described and characterized in
literature@4,5#. Precisely, fore,0.036 no global synchroni-
zation ~NS! is established, in terms of the global indicato
proposed up to now. For 0.036<e<0.11 a phase synchro
nized~PS! regime emerges characterized by the boundedn
in time of the phase differenceDf[uf12f2u@f1,2
[arctan(y1,2/x1,2) being the phases of the two oscillators#,
whereas the two chaotic amplitudes remain almost unco
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lated @4#. At larger coupling strengths (e>0.145), lag syn-
chronization~LS! is established, corresponding to a colle
tive motion whereinux(t)2y(t2t)u is bounded over the
whole dynamical evolution (t.0 represents here a lag time!
@5#. In this regime, increasinge results in gradually decreas
ing t, eventually ending with a regime indistinguishab
from complete synchronization~CS!.

Most of the transition points between these regimes w
also identified in Ref.@5#, by inspection of the Lyapunov
spectrum of Eqs.~3! as a function of the coupling strength
Precisely, the NS to PS~PS to LS! transition occurs for tha
value of e for which a previously zero~positive! Lyapunov
exponent becomes negative. On the other hand, the LS to
transition is a smooth transition that can be tracked by us
the time averaged similarity function@5#. In the following we
apply our method with a threshold value ofQ50.1 for the
discrimination of whether or not the coupled systems disp
local functional relationships.

An intermediate synchronization regime between PS
LS exists in the range 0.11<e,0.145, called intermitten
lag synchronization~ILS!, where the system~3! displays
long epochs of LS evolution, interrupted by persistent bu
of desynchronized motion. This has been observed num
cally, and put in relation with the system’s trajectory pass
through configurations where one globally negat
Lyapunov exponent has a local positive value. Since ILS
an intimately local phenomenon, its transition point has
been captured by those techniques that measure time o
semble averaged quantities. As a result, up to now, studie
ILS have been limited to numerical investigations@5#, or
based upon the role in the synchronization process playe
the different unstable periodic orbits visited by the dynam
@14#. We will show that our SPP indicator is able to discrim
nate between ILS and PS regimes, as well as to dire
identify the PS to ILS transition point.

We have performed long time simulations of Eqs.~3! at
several coupling strength values, and collected data po
from the two scalar outputsx1 and x2. For eache, data
points are collected over a time corresponding to 1.73105

Rössler cycles, with a sampling frequency of ten points
cycle. Simulations were performed with a standard fou
order Runge-Kutta method, and with random initial con
tions. Furthermore, the standard embedding technique@15#
was used to reconstruct the three dimensional vector stax
andy from time-delayed coordinates of the scalar variab
x1 and x2, and calculation of the SPP indicator was p
formed on the reconstructed spaces.

Figure 2 reports the behavior of the SPP indicator vs
coupling strengthe, calculated by fixingd so asn5150
points are falling withinV. Fixing n results in general in an
error d that is not constant over the attractor. On the ot
side, if the measure is strongly nonhomogeneous, fixind
could generate situations in whichn is so small that the
statistics becomes meaningless. These concerns do not a
however, in the case of the Ro¨ssler system for the paramete
used in Eqs.~3!, since the density of points is roughl
homogeneous over the attractor and both choices
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to equivalent results. As one expects, SPP increases m
tonically as the coupling strength increases, saturating t
when approaching the CS regime.

Interesting information can be extracted by inspection
SPP within those synchronization regimes, such as PS
ILS that do not correspond to global synchronization fe
tures. In particular, it is found that SPP is linearly increas
with e in both regimes, but with two different slopes~see the
inset of Fig. 2!. The linear increase of the indicator alread
within PS is a relevant result. Indeed, if and to which exte
PS implies weak correlations in the chaotic amplitudes w

FIG. 2. SPP indicator~see text for definition! vs coupling
strengthe. The vertical dashed lines indicate the transition poi
between the different synchronization regimes. The inset show
zoom limited to the range 0.05,e,0.15, where the PS to ILS
transition point is located atec.0.10. Notice the two different
slopes in the linear growth of SPP fore,ec ande.ec .

FIG. 3. ~a! SPP indicator vs numbern of points falling withinV
for e50.01 ~triangles, NS!, e50.08 ~squares, PS!, and e50.155
~circles, LS!. ~b! SPP vsn within the LS regime fore50.155~dot-
ted line!, e50.17 ~dashed line!, ande50.19 ~continuous line!. For
all cases, before saturation (n<50), SPP depends onn with a scal-
ing law SPP;nb with b;0.85. Forn.50 the three curves satu
rate to 100% of synchronization points.
1-3
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yet unknown, and constituted an issue generating con
versy. The present result shows that PS does imply an
creasing percentage of local functional relationship, th
quantifying directly the degree of amplitude synchronizat
within such a regime. Furthermore, the crossover point
tween the slopes of the two linear growths allows one
identify the PS to ILS transition point ate.0.10, that none
of the various indicators used in previous works was capa
to reveal.

Finally, other interesting information can be extract
from the scaling behavior of SPP withn, that is with enlarg-
ing the radiusd of the image box in theY subspace. Figure
3~a! shows SPP vsn for the NS, PS, and LS regimes. In a
cases, the SPP indicator increases monotonically. For
~circles! it fastly saturates to 1~the same value as CS!. This
is reflecting the fact that LS differs from CS only due to t
presence of a lag timet. Enlarging too much the neighbo
hood size results inV to fully overlap with all images of
points in U shifted by a phase factorvt, wherev is the
mean frequency of the oscillator, thus making indistingui
able LS from CS.

More insights on this property can be extracted from F
3~b!, where SPP is reported vsn within the LS regime for
different values ofe, corresponding to different values of th
lag time t. Here one sees that, before saturation, SPP
pends onn with a scaling law SPP;nb with a unique ex-
ponentb;0.85 for the threee values. However, the thre
curves saturate to 1 at three different values ofn, reflecting
A
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the behavior oft within LS, that monotonically decreases a
e increases.

Coming again to Fig. 3~a!, one realizes that for both NS
~triangles! and PS~squares!, the SPP indicator is alway
bounded away from 1. This indicates that in these regime
global predictability of one subsystem’s states from measu
ment in the other subspace is never possible for any ch
of resolution. However, given a resolutiond in the image
subspace~a maximum error allowed in the prediction!, our
indicator quantifies the number of states that can be loc
predicted at that resolution, thus revealing that local hidd
synchronization features can be extracted for prediction p
poses, also in those cases in which global dependencie
not established. This feature might be relevant for detec
configurations where a local prediction can be assessed
many situations where a global prediction procedure fails

In real data, the effect of noise is to reduce the resolut
in the phase space, so that the statistics relative to bo
containing a small number of points is not reliable anymo
A threshold inn should therefore be introduced, typical
corresponding tod ’s larger than the noise-induced unce
tainty.

The authors are indebted to L. Moniz and L. M. Peco
for many fruitful discussions. This work was partially su
ported by EU Contract No. HPRN-CT-2000-00158, a
MIUR Project No. FIRB n. RBNE01CW3M_001. L.P. ac
knowledges support from Contract No. MCFI-2000-0182
t,

M.

-

nd

A
-

h-
@1# For an overview of this matter, we direct the reader to
Pikovsky, M. Rosenblum, and J. Kurths,Synchronization: A
Universal Concept in Nonlinear Sciences~Cambridge Univer-
sity Press, Cambridge, England, 2001!; S. Boccaletti, J.
Kurths, G. Osipov, D. Valladares, and C. Zhou, Phys. R
366, 1 ~2002!.

@2# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!;
L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.64, 821~1990!.

@3# N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Aba
banel, Phys. Rev. E51, 980~1995!; L. Kocarev and U. Parlitz,
Phys. Rev. Lett.76, 1816~1996!.

@4# M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. R
Lett. 76, 1804~1996!.

@5# M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. R
Lett. 78, 4193~1997!; S. Boccaletti and D.L. Valladares, Phy
Rev. E62, 7497~2000!.

@6# C. Schafer, M.G. Rosemblum, J. Kurths, and H.H. Abel, N
ture ~London! 392, 239 ~1998!; P. Tass, M.G. Rosemblum
M.G. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schn
zler, and H.J. Freund, Phys. Rev. Lett.81, 3291~1998!; G.D.
Van Wiggeren and R. Roy, Science279, 1198~1998!; A. Ne-
iman, X. Pei, D. Russell, W. Wojtenek, L. Wilkens, F. Mos
H.A. Braun, M.T. Huber, and K. Voigt, Phys. Rev. Lett.82,
660 ~1999!; G.M. Hall, S. Bahar, and D.J. Gauthier,ibid. 82,
2995 ~1999!; B. Blasius, A. Huppert, and L. Stone, Natu
.

.

.

.

-

~London! 399, 354 ~1999!; D.J. DeShazer, R. Breban, E. Ot
and R. Roy, Phys. Rev. Lett.87, 044101~2001!.

@7# C.M. Ticos, E. Rosa, Jr., W.B. Pardo, J.A. Walkenstein, and
Monti, Phys. Rev. Lett.85, 2929~2000!; D. Maza, A. Vallone,
H. Mancini, and S. Boccaletti,ibid. 85, 5567 ~2000!; E. Al-
laria, F.T. Arecchi, A. Di Garbo, and R. Meucci,ibid. 86, 791
~2001!.

@8# I.I. Blekhman, A.L. Fradkov, H. Nijmeijer, and A.Yu. Pogrom
sky, Syst. Control Lett.31, 299 ~1997!; R. Brown and L. Ko-
carev, Chaos10, 344 ~2000!.

@9# S. Boccaletti, Louis M. Pecora, and A. Pelaez, Phys. Rev. E63,
066219~2001!.

@10# S. Boccaletti, D.L. Valladares, L.M. Pecora, H.P. Geffert, a
T. Carroll, Phys. Rev. E65, 035204~2002!.

@11# M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Phys. Rev.
45, 3403~1992!; H.D.I. Abarbanel,Analysis of Observed Cha
otic Data ~Springer-Verlag, New York, 1996!.

@12# L. Pecora, T. Caroll, and J. Heagy, Phys. Rev. E52, 3420
~1995!.

@13# L. Moniz and L. M. Pecora~private communication!.
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